
CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Advance Web Technologies &
Programming (CSC350)

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

What is JSON

• JSON stands for JavaScript Object Notation.

• JSON is a lightweight data-interchange format.

• JSON is plain text written in JavaScript object notation.

• JSON is used to send data between computers.

• JSON is language independent .

• JSON is a data interchange format.

• Interactive Web 2.0 applications, no more use page replacement.
Data transfer without refreshing a page.

• The most important aspects of data transfer are simplicity,
extensibility, interoperability, openness and human readability

• Key idea in AJAX – Asynchronous Java Script and XML.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Why Use JSON?

• The JSON format is syntactically similar to the code for creating JavaScript
objects.

• Because of this, a JavaScript program can easily convert JSON data into
JavaScript objects.

• Since the format is text only, JSON data can easily be sent between
computers, and used by any programming language.

• JavaScript has a built in function for converting JSON strings into JavaScript
objects:

JSON.parse()

• JavaScript also has a built in function for converting an object into a JSON
string:

JSON.stringify()

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Example of XML-formatted data

• The below XML document contains data about a book: its
title, authors, date of publication, and publisher.

<Book>

 <Title>Parsing Techniques</Title>

 <Authors>

 <Author>Dick Grune</Author>

 <Author>Ceriel J.H. Jacobs</Author>

 </Authors>

 <Date>2007</Date>

 <Publisher>Springer</Publisher>

</Book>

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Same XML data,
in JSON format

{
 "Book":
 {
 "Title": "Parsing Techniques",
 "Authors": ["Dick Grune", "Ceriel J.H. Jacobs"],
 "Date": "2007",
 "Publisher": "Springer"
 }
}

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

XML and JSON, side-by-side

<Book>

 <Title>Parsing Techniques</Title>

 <Authors>

 <Author>Dick Grune</Author>

 <Author>Ceriel J.H. Jacobs</Author>

 </Authors>

 <Date>2007</Date>

 <Publisher>Springer</Publisher>

</Book>

{

 "Book":

 {

 "Title": "Parsing Techniques",

 "Authors": ["Dick Grune", "Ceriel J.H. Jacobs"],

 "Date": "2007",

 "Publisher": "Springer"

 }

}

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

How does it work?

• JSON is a subset of Java Script. JSON can be parsed by a Java Script parser.

• It can represent either complex or simple data as it has data types

• They are Strings, Number, Boolean, Objects and Arrays

• E.g. of Object:

• { "name": "Jack (\"Bee\") Nimble", "format": { "type": "rect", "width": 120,
"interlace": false}}

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Example

{"firstName": "John",

 "lastName" : "Smith",

 "age" : 25,

 "address" :

 {"streetAdr” : "21 2nd Street",

 "city" : "New York",

 "state" : "NY",

 ”zip" : "10021"},

 "phoneNumber":

 [{"type" : "home",

 "number": "212 555-1234"},

 {"type" : "fax",

 "number” : "646 555-4567"}]

 }

• This is a JSON object with five key-
value pairs

• Objects are wrapped by curly braces

• There are no object IDs

• Keys are strings

• Values are numbers, strings, objects
or arrays

• Arrays are wrapped by square
brackets

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Using JSON you can define arbitrarily complex
structures

{

 "Book":

 {

 "Title": "Parsing Techniques",

 "Authors": ["Dick Grune", "Ceriel J.H. Jacobs"]

 }

}

{

 "Book":

 {

 "Title": "Parsing Techniques",

 "Authors": [

 {"name":"Dick Grune", "university": "Vrije Universiteit"},

 {"name":"Ceriel J.H. Jacobs", "university": "Vrije Universiteit"}

]

 }

}

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Extend, and
infinitum

{
 "Book":
 {
 "Title": "Parsing Techniques",
 "Authors": [
 {"name": {"first":"Dick", "last":"Grune"},
 "university": "Vrije Universiteit"},
 {"name": {"first":"Ceriel", "last":"Jacobs"},
 "university": "Vrije Universiteit"}
]
 }
}

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Exchanging Data

• The JSON format is almost identical to JavaScript
objects.

• In JSON, keys must be strings, written with double
quotes:

• In JSON, string values must be written with double
quotes:

• The file type for JSON files is ".json"

•

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Exchanging Data in JS

• When exchanging data between a browser and a
server, the data can only be text.

• JSON is text, and we can convert any JavaScript
object into JSON, and send JSON to the server.

• We can also convert any JSON received from the
server into JavaScript objects.

• This way we can work with the data as JavaScript
objects, with no complicated parsing and
translations.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Parse and Stringify

• JavaScript has a built in function to convert a string, written in
JSON format, into native JavaScript objects: JSON.parse()

• So, if you receive data from a server, in JSON format, you can
use it like any other JavaScript object.

• When sending data to a web server, the data has to be a
string.

• Convert a JavaScript object into a string with JSON.stringify().

• In JSON, date objects and functions are not allowed. The
JSON.stringify() function will convert any dates or function
into strings.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Sending Data in JS

• If you have data stored in a JavaScript object, you
can convert the object into JSON, and send it to a
server:

• Example

var myObj = { "name":"John", "age":31, "city":"New York" };

var myJSON = JSON.stringify(myObj);

window.location = "demo_json.php?x=" + myJSON;

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Receiving Data in JS

• If you receive data in JSON format, you can convert
it into a JavaScript object:

• Example

var myJSON = '{ "name":"John", "age":31, "city":"New York" }';
var myObj = JSON.parse(myJSON);
document.getElementById("demo").innerHTML =
myObj.name;

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Storing Data in local storage
• When storing data, the data has to be a certain format, and

regardless of where you choose to store it, text is always one of the
legal formats.

• JSON makes it possible to store JavaScript objects as text.

• Example: Storing data in local storage

• //Storing data:
myObj = { "name":"John", "age":31, "city":"New York" };
myJSON = JSON.stringify(myObj);
localStorage.setItem("testJSON", myJSON);

• //Retrieving data:
text = localStorage.getItem("testJSON");
obj = JSON.parse(text);
document.getElementById("demo").innerHTML = obj.name;

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

JSON and PHP

• PHP has some built-in functions to handle JSON.

• Objects in PHP can be converted into JSON by using
the PHP function json_encode():

<?php

$myObj->name = "John";

$myObj->age = 30;

$myObj->city = "New York";

$myJSON = json_encode($myObj);

echo $myJSON;

?> Output:

{"name":"John","age":30,"city":"New York"}

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Receiving JSON in PHP

ini_set("allow_url_fopen", 1); //if not open

$json = file_get_contents(‘php://input’);

$obj = json_decode($json);

echo $obj->variablekey;

OR

Echo $obj[‘variablekey’]; OR

foreach ($obj as $key=>$value) {

echo $key . ' = ' . $value;}

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Ajax

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Transaction Steps in JS

• Create an XMLHTTPRequestobject

• Set up the response handler

• Open the request

• Send the request

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Example

Here is a simple AJAX transaction:

Var httpRequest= new XMLHttpRequest();

httpRequest.onreadystatechange= function() {

if (httpRequest.readyState== 4) {

alert('Request complete!');

};

httpRequest.open('GET', 'something.py', true);

httpRequest.send(null);

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

The XMLHttpRequest Object

• var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {
// Typical action to be performed when the

document is ready:
document.getElementById("demo").innerHTML

= xhttp.responseText;
 }

};
xhttp.open("GET", "filename", true);
xhttp.send();

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

XML
eXtensible Markup Language

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

XML, Xpath and XSLT

• XML is an acronym for eXtensible Markup Language.
• Its purpose is to describe structured data

• XPath is a language for navigating through an XML
document.
• It’s used to select specific pieces of information from the

document

• XSLT is a language for transforming XML into something
else.
• Often used to generate HTML or another XML document.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

XML Basics

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

XML Basics

❑Basic Text
 <?xml version = “1.0”?>
 <!-- This is Student Data Xml File Student.xml -->
 <student>
 <Name>
 <FirstName> A </FirstName>
 <LastName> S </LastName>
 </Name>
 <Department> Computer Science </Department>
 <Age> 18 </Age>
 </student>

❑ Processing XML Document (parsers, processor)
❑ Validating XML Document

▪ Document Type Definition, DTD
▪ W3C XML Schema

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

❑ (Freely definable) tags: student, Name, FirstName,Age,

▪ with start tag: < student > etc.

▪ and end tag: </ student > etc.

❑ Elements: < student > ... </ student >

❑ Elements have a name (student) and a content (...)

❑ Elements may be nested.

❑ Elements may be empty: <this_is_empty/>

❑ Element content is typically “Parsed character data“ (PCDATA), i.e.,

strings with special characters, and/or nested elements (mixed content if

both).

❑ Each XML document has exactly one root element and forms a tree.

❑ XML Basics(Tags and Elements)

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Element Body Rules

• Element bodies may contain text or markup or
both.
• By text, we mean character strings with no markup.

• Markup is text with embedded markup characters:
• & < > ‘ and “

• Elements may also contain CDATA sections, designed to
support text including large sections of markup but not
interpreted as markup:
• <! [CDATA[…]]>

• These cannot be used to carry binary data.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

CDATA

• By default, all text inside an XML document is parsed

• You can force text to be treated as unparsed character data
by enclosing it in <![CDATA[...]]>

• Any characters, even & and <, can occur inside a CDATA

• Whitespace inside a CDATA is (usually) preserved

• The only real restriction is that the character sequence]]>
cannot occur inside a CDATA

• CDATA is useful when your text has a lot of illegal characters
(for example, if your XML document contains some HTML
text)

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Illegal Characters

• Certain characters are reserved for markup and are
illegal in names and payload text:

 < < less than
 > > greater than
 & & ampersand
 ' ‘ apostrophe
 " “ quotation mark

• We represent them in XML with the escape sequence
shown on the left, e.g.: < if we want a less than character
in payload text.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

<CATALOG>

 <CD>

 <TITLE>Nayyara Sings Faiz</TITLE>

 <ARTIST>Nayyara Noor</ARTIST>

 <COUNTRY>Pakistan</COUNTRY>

 <COMPANY>EMI</COMPANY>

 <PRICE>250.00</PRICE>

 <YEAR>1976</YEAR>

 </CD>

 <CD>

 <TITLE>A Tribute To Faiz Ahmed Faiz</TITLE>

 <ARTIST>Iqbal Bano</ARTIST>

 <COUNTRY>Pakistan</COUNTRY>

 <COMPANY>EMI</COMPANY>

 <PRICE>300.00</PRICE>

 <YEAR>1990</YEAR>

 </CD>

</CATALOG>

❑ XML Example(Elements)

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

<person gender="female">
 <firstname>Natasha</firstname>
 <lastname>Ahmed</lastname>

</person>

XML Attributes

Elements may have attributes (in the start tag) that have a name and

a value, e.g. <section number=“1“>.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

• What is the difference between elements and

attributes?

– Only one attribute with a given name per element (but

an arbitrary number of subelements)

– Attributes have no structure, simply strings (while

elements can have subelements)

• As a rule of thumb:

– Content into elements

– Metadata into attributes

Example:
<person born=“1912-06-23“ died=“1954-06-07“>

Alan Turing</person> proved that…

XML Attributes

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Example XML document

<?xml version="1.0"?>

<weatherReport>

 <date>7/14/97</date>

 <city>North Place</city>

 <state>NX</state>

 <country>USA</country>

 High Temp: <high scale="F">103</high>

 Low Temp: <low scale="F">70</low>

 Morning: <morning>Partly cloudy, Hazy</morning>

 Afternoon: <afternoon>Sunny & hot</afternoon>

 Evening: <evening>Clear and Cooler</evening>

</weatherReport>

From: XML: A Primer, by Simon St. Laurent

	Slide 1
	Slide 2: What is JSON
	Slide 3: Why Use JSON?
	Slide 4: Example of XML-formatted data
	Slide 5: Same XML data, in JSON format
	Slide 6: XML and JSON, side-by-side
	Slide 7: How does it work?
	Slide 8: Example
	Slide 9: Using JSON you can define arbitrarily complex structures
	Slide 10: Extend, and infinitum
	Slide 11: Exchanging Data
	Slide 12: Exchanging Data in JS
	Slide 13: Parse and Stringify
	Slide 14: Sending Data in JS
	Slide 15: Receiving Data in JS
	Slide 16: Storing Data in local storage
	Slide 17: JSON and PHP
	Slide 18: Receiving JSON in PHP
	Slide 19: Ajax
	Slide 20: Transaction Steps in JS
	Slide 21: Example
	Slide 22: The XMLHttpRequest Object
	Slide 23: XML eXtensible Markup Language
	Slide 24: XML, Xpath and XSLT
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Element Body Rules
	Slide 29: CDATA
	Slide 30: Illegal Characters
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Example XML document

