Advance Web Technologies &
Programming (CSC350)

Instructor: Aamir Parre CSC 350 Modern Programming Languages

What is JSON

e JSON stands for JavaScript Object Notation.

* JSON is a lightweight data-interchange format.

e JSON is plain text written in JavaScript object notation.
* JSON is used to send data between computers.

e JSON is language independent .

e JSON is a data interchange format.

* Interactive Web 2.0 applications, no more use page replacement.
Data transfer without refreshing a page.

 The most important aspects of data transfer are simplicity,
extensibility, interoperability, openness and human readability

* Key idea in AJAX — Asynchronous Java Script and XML.
)

Instructor: Aamir Parre CSC 350 Modern Programming Languages UniTubeCore

Why Use JSON?

* The JSON format is syntactically similar to the code for creating JavaScript
objects.

* Because of this, a JavaScript program can easily convert JSON data into
JavaScript objects.

* Since the format is text only, JSON data can easily be sent between
computers, and used by any programming language.

 JavaScript has a built in function for converting JSON strings into JavaScript
objects:

JSON.parse()

 JavaScript also has a built in function for converting an object into a JSON
string:

JSON.stringify()

)

Instructor: Aamir Parre CSC 350 Modern Programming Languages UniTubeCore

Example of XML-formatted data

* The below XML document contains data about a book: its
title, authors, date of publication, and publisher.

<Book>
<Title>Parsing Techniques</Title>
<Authors>
<Author>Dick Grune</Author>
<Author>Ceriel J.H. Jacobs</Author>
</Authors>
<Date>2007</Date>
<Publisher>Springer</Publisher>
</Book>

Instructor: Aamir Parre CSC 350 Modern Programming Languages UniTubeCore

{

"Book":
{
Same XML data "Title": "Parsing Techniques",
) / "Authors": ["Dick Grune", "Ceriel J.H. Jacobs"],
in JSON format "Date’: "2007",
"Publisher": "Springer"
}

)

Instructor: Aamir Parre CSC 350 Modern Programming Languages UniTubeCore

XML and JSON, side-by-side

{

<Book> "Book":

<Title>Parsing Techniques</Title> M
<Authors> "Title": "Parsing Techniques",

<Author>Dick Grune</Author> "Authors": ["Dick Grune", "Ceriel J.H. Jacobs"],

<Publisher>Springer</Publisher>
</Book>

<Author>Ceriel J.H. Jacobs</Author> "Date": "2007",
</Authors> / "Publisher": "Springer"
<Date>2007</Date> }

}

Instructor: Aamir Parre CSC 350 Modern Programming Languages

How does it work?

e JSON is a subset of Java Script. JSON can be parsed by a Java Script parser.
* |t can represent either complex or simple data as it has data types

e They are Strings, Number, Boolean, Objects and Arrays

* E.g. of Object:

* {"name": "Jack (\"Bee\") Nimble", "format": { "type": "rect", "width": 120,
"interlace": false}}

)

Instructor: Aamir Parre CSC 350 Modern Programming Languages UniTubeCore

Example

{"firstName": "John", - Thisis a JSON object with five key-
"lastName" : "Smith", value pairS
"age" : 25,

- Objects are wrapped by curly braces
"address" :

- There are no object IDs
{"streetAdr” : "21 2nd Street",

"ty "New York", - Keys are strings
"state” 1 "NY", - Values are numbers, strings, objects
"zip" :"10021"}, or arrays

"phoneNumber":

- Arrays are wrapped by square

n n : ||h n
[{"type” : "home, brackets

"number": "212 555-1234"},
{"type" : Ilfaxll’
"number” : "646 555-4567"}]

Instructor: Aamir Parre CSC 350 Modern Programming Languages UniTubeCore

Using JSON you can define arbitrarily complex

structures
{
"Book":
{
"Title": "Parsing Techniques",
"Authors": ["Dick Grune", "Ceriel J.H. Jacobs"]
}
}
{
"Book":
{
"Title": "Parsing Techniques",
"Authors": [
{"name":"Dick Grune", "university": "Vrije Universiteit"},
{"name":"Ceriel J.H. Jacobs", "university": "Vrije Universiteit"}
]
}
} A

\
Instructor: Aamir Parre CSC 350 Modern Programming Languages UniTubeCore

Extend, and
infinitum

Instructor: Aamir Parre

"Book":
{

"Title": "Parsing Techniques",

"Authors": [
{"name": {"first":"Dick", "last":"Grune"},
"university": "Vrije Universiteit"},
{"name": {"first":"Ceriel", "last":"Jacobs"},
"university": "Vrije Universiteit"}

]

}

)

CSC 350 Modern Programming Languages UniTubeCore

Exchanging Data

* The JSON format is almost identical to JavaScript
objects.

* In JSON, keys must be strings, written with double
quotes:

* In JSON, string values must be written with double
quotes:

* The file type for JSON files is ".json"

Instructor: Aamir Parre CSC 350 Modern Programming Languages

Exchanging Data in JS

* When exchanging data between a browser and a
server, the data can only be text.

* JSON is text, and we can convert any JavaScript
object into JSON, and send JSON to the server.

 We can also convert any JSON received from the
server into JavaScript objects.

* This way we can work with the data as JavaScript
objects, with no complicated parsing and
translations.

Instructor: Aamir Parre CSC 350 Modern Programming Languages

Parse and Stringity

e JavaScript has a built in function to convert a string, written in
JSON format, into native JavaScript objects: JSON.parse()

* So, if you receive data from a server, in JSON format, you can
use it like any other JavaScript object.

 When sending data to a web server, the data has to be a
string.

e Convert a JavaScript object into a string with JSON.stringify().

 InJSON, date objects and functions are not allowed. The
JSON.stringify() function will convert any dates or function
into strings.

Instructor: Aamir Parre CSC 350 Modern Programming Languages

Sending Data in JS

* |f you have data stored in a JavaScript object, you
can convert the object into JSON, and send it to a
server:

 Example

var myObj ={ "name":"John", "age":31, "city":"New York" };

var myJSON = JSON.stringify(myObj);

window.location = "demo_json.php?x=" + myJSON;

Instructor: Aamir Parre CSC 350 Modern Programming Languages

Recelving Data in JS

* If you receive data in JSON format, you can convert
it into a JavaScript object:

* Example

var myJSON ="'{"name":"John", "age":31, "city":"New York" }';
var myObj = JSON.parse(myJSON);
document.getElementByld("demo").innerHTML =
myObj.name;

Instructor: Aamir Parre CSC 350 Modern Programming Languages

Storing Data in local storage

 When storing data, the data has to be a certain format, and
regardless of where you choose to store it, text is always one of the
legal formats.

 JSON makes it possible to store JavaScript objects as text.

 Example: Storing data in local storage

» //Storing data:
myObj = { "name":"John", "age":31, "city":"New York" };
myJSON = JSON.stringify(myOQObj);
localStorage.setltem("testJSON", myJSON);

* //Retrieving data:
text = localStorage.getltem("testJSON");
obj = JSON.parse(text);
document.getElementByld("demo").innerHTML = obj.name;

Instructor: Aamir Parre CSC 350 Modern Programming Languages

JSON and PHP

e PHP has some built-in functions to handle JSON.

* Objects in PHP can be converted into JSON by using
the PHP function json_encode():

<?php

SmyObj->name = "John";
SmyObj->age = 30;

SmyObj->city = "New York";
SmyJSON = json_encode(SmyObj);
echo SmyJSON;

7> Output:

{''name":"John","age":30,"city": NewYork"f

Instructor: Aamir Parre CSC 350 Modern Programmmg Languages

Recelving JSON in PHP

ini_set("allow_url _fopen", 1); //if not open
Sjson = file_get_contents(‘php://input”’);
Sobj = json_decode(Sjson);
echo Sobj->variablekey;
OR
Echo Sobj[‘variablekey’]; OR
foreach (Sobj as Skey=>Svalue) {
echo Skey .'=". Svalue;}

Instructor: Aamir Parre CSC 350 Modern Programming Languages UniTubeCore

Ajax

Instructor: Aamir Parre CSC 350 Modern Programming Languages UniTubeCore

Transaction Steps in JS

* Create an XMLHTTPRequestobject
e Set up the response handler

* Open the request

* Send the request

Instructor: Aamir Parre CSC 350 Modern Programming Languages

Example

Here is a simple AJAX transaction:

Var httpRequest= new XMLHttpRequest();
httpRequest.onreadystatechange= function() {
if (httpRequest.readyState==4) {
alert('Request complete!’);

b

httpRequest.open('GET', 'something.py’, true);
httpRequest.send(null);

Instructor: Aamir Parre CSC 350 Modern Programming Languages

The XMLHttpRequest Object

e var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {
if (this.readyState == 4 && this.status == 200) {
// Typical action to be performed when the
document is ready:
document.getElementByld("demo").innerHTML
= xhttp.responseText;

}
it
xhttp.open("GET", "filename", true);
xhttp.send();

Instructor: Aamir Parre CSC 350 Modern Programming Languages

XML

eXtensible Markup Language

CSC 350 Modern Programming Languages

XML, Xpath and XSLT

« XML is an acronym for eXtensible Markup Language.
* |Its purpose is to describe structured data

e XPath is a language for navigating through an XML
document.

* |It’s used to select specific pieces of information from the
document

e XSLT is a language for transforming XML into something
else.

* Often used to generate HTML or another XML document.

Instructor: Aamir Parre CSC 350 Modern Programming Languages

XML Basics

)

Instructor: Aamir Parre CSC 350 Modern Programming Languages UniTubeCore

XML Basics

dBasic Text

<?xml version = “1.0”7?>
<l-- This is Student Data Xml File Student.xml -->
<student>
<Name>
<FirstName> A </FirstName>
<LastName> S </LastName>
</Name>
<Department> Computer Science </Department>
<Age> 18 </Age>
</student>

[Processing XML Document (parsers, processor)
O Validating XML Document

= Document Type Definition, DTD

= W3C XML Schema

Instructor: Aamir Parre CSC 350 Modern Programming Languages

. XML Basics(Tags and Elements)

d

OO0 00O

O

(Freely definable) tags: student, Name, FirstName, Age,
= withstarttag: < student > etc.
= andendtag: </ student > etc.
Elements: < student > ... </ student >
Elements have a name (student) and a content (. . .)
Elements may be nested.
Elements may be empty: <this is empty/>

Element content is typically “Parsed character data* (PCDATA), i.e.,
strings with special characters, and/or nested elements (mixed content if
both).

Each XML document has exactly one root element and forms a tree.

Instructor: Aamir Parre CSC 350 Modern Programming Languages

Element Body Rules

* Element bodies may contain text or markup or
both.

* By text, we mean character strings with no markup.
* Markup is text with embedded markup characters:
e &<>‘and“
* Elements may also contain CDATA sections, designed to

support text including large sections of markup but not
interpreted as markup:

 <I[CDATA[...]]>
* These cannot be used to carry binary data.

Instructor: Aamir Parre CSC 350 Modern Programming Languages

CDATA

e By default, all text inside an XML document is parsed

* You can force text to be treated as unparsed character data
by enclosing it in

* Any characters, even & and <, can occur inside a CDATA
* Whitespace inside a CDATA is (usually) preserved

* The only real restriction is that the character sequence
cannot occur inside a CDATA

e CDATA is useful when your text has a lot of illegal characters
(for example, if your XML document contains some HTML
text)

Instructor: Aamir Parre CSC 350 Modern Programming Languages

lllegal Characters

 Certain characters are reserved for markup and are
illegal in names and payload text:

< < less than

> > greater than
& & ampersand
' ‘ apostrophe
" “ guotation mark

* We represent them in XML with the escape sequence
shown on the left, e.g.: < if we want a less than character
in payload text.

Instructor: Aamir Parre CSC 350 Modern Programming Languages

J XML Example(Elements)

<CATALOG>
<CD>
<TITLE>Nayyara Sings Faiz</TITLE>
<ARTIST>Nayyara Noor</ARTIST>
<COUNTRY>Pakistan</COUNTRY>
<COMPANY>EMI</COMPANY>
<PRICE>250.00</PRICE>
<YEAR>1976</YEAR>
</CD>
<CD>
<TITLE>A Tribute To Faiz Ahmed Faiz</TITLE>
<ARTIST>Igbal Bano</ARTIST>
<COUNTRY>Pakistan</COUNTRY>
<COMPANY>EMI</COMPANY>
<PRICE>300.00</PRICE>
<YEAR>1990</YEAR>
</CD>
</CATALOG>

Instructor: Aamir Parre CSC 350 Modern Programming Languages UniTubeCore

XML Attributes

Elements may have attributes (in the start tag) that have a name and
a value, e.g. <section number=“1%“>

<person gender="female">
<firstname>Natasha</firstname>
<lastname>Ahmed</lasthame>
</person>

)

Instructor: Aamir Parre CSC 350 Modern Programming Languages UniTubeCore

XML Attributes

 What is the difference between elements and

attributes?

— Only one attribute with a given name per element (but
an arbitrary number of subelements)

— Attributes have no structure, simply strings (while
elements can have subelements)
« As arule of thumb:
— Content into elements
— Metadata into attributes

Example:
<person born=%"1912-06-23" died=%"1954-06-07">

Alan Turing</person> proved that..
A

UniTubeCore

Instructor: Aamir Parre CSC 350 Modern Programming Languages

Example XML document

<?xml version="1.0"?>

7/14/97
North Place
NX
USA

High Temp: scale="F">103
Low Temp: scale="F">70
Morning: Partly cloudy, Hazy
Afternoon: Sunny & hot
Evening: Clear and Cooler

From: XML: A Primer, by Simon St. La&rent

Instructor: Aamir Parre CSC 350 Modern Programming Languages UniTubeCore

	Slide 1
	Slide 2: What is JSON
	Slide 3: Why Use JSON?
	Slide 4: Example of XML-formatted data
	Slide 5: Same XML data, in JSON format
	Slide 6: XML and JSON, side-by-side
	Slide 7: How does it work?
	Slide 8: Example
	Slide 9: Using JSON you can define arbitrarily complex structures
	Slide 10: Extend, and infinitum
	Slide 11: Exchanging Data
	Slide 12: Exchanging Data in JS
	Slide 13: Parse and Stringify
	Slide 14: Sending Data in JS
	Slide 15: Receiving Data in JS
	Slide 16: Storing Data in local storage
	Slide 17: JSON and PHP
	Slide 18: Receiving JSON in PHP
	Slide 19: Ajax
	Slide 20: Transaction Steps in JS
	Slide 21: Example
	Slide 22: The XMLHttpRequest Object
	Slide 23: XML eXtensible Markup Language
	Slide 24: XML, Xpath and XSLT
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Element Body Rules
	Slide 29: CDATA
	Slide 30: Illegal Characters
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Example XML document

